Dynamic Stacked Generalization for Node Classification on Networks
نویسندگان
چکیده
We propose a novel stacked generalization (stacking) method as a dynamic ensemble technique using a pool of heterogeneous classifiers for node label classification on networks. The proposed method assigns component models a set of functional coefficients, which can vary smoothly with certain topological features of a node. Compared to the traditional stacking model, the proposed method can dynamically adjust the weights of individual models as we move across the graph and provide a more versatile and significantly more accurate stacking model for label prediction on a network. We demonstrate the benefits of the proposed model using both a simulation study and real data analysis.
منابع مشابه
An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملResearching on Multi-net Systems Based on Stacked Generalization
Among the approaches to build a Multi-Net system, Stacked Generalization is a well-known model. The classification system is divided into two steps. Firstly, the level-0 generalizers are built using the original input data and the class label. Secondly, the level-1 generalizers networks are built using the outputs of the level-0 generalizers and the class label. Then, the model is ready for pat...
متن کاملA Case Study on Stacked Generalization with Software Reliability Growth Modeling Data
We study on stacked generalization performance with software reliability growth data by using a pseudoinverse learning algorithm for feedforward neural networks. The experiments show that for noisy data, using stacked generalization can not improve the network performance when overtrained networks are engaged. With properly trained networks, stacked generalization can improve the network genera...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.04804 شماره
صفحات -
تاریخ انتشار 2016